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Abstract: A new and simple methodology is proposed to solve both constrained and unconstrained planar 
continuous single-facility location problems. As particular instances, the classical location problems with 
mixed gauges can be solved. Theoretical convergence is proved, and numerical examples are given, 
showing a fast convergence in a small number of steps. 
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1. Introduction We propose the following formulation: 

In this paper, we study different problems 
within the scope of Planar Location Theory. The 
single-facility location problem may be generally 
defined as follows: 

Given a set of individuals or collectivities (de- 
mand points), the localization of which is known, 
the location of a service facility must be chosen in 
a way that best satisfies the needs of the collectiv- 
ity. 

Depending on the exact meaning given to the 
word best, this general formulation will produce 
different problems. Our goal is to find an algo- 
rithm applicable to quite general statements, that 
is: allowing a certain degree of freedom in the 
selection of the globalizing function and the dis- 
tance measures in the problem. 

Correspondence to: Dr. J. Puerto, Departamento de Estadlstica 
e I.O., Universidad de Sevilla, Sevilla, Spain. 

(P) 

min F ( x ) = ~ b ( y , ( x - a l )  . . . . .  y , ( x - a , ) )  

s.t. x ~ X, 

where A = { a  1 . . . . .  an} is the set of demand 
points; 4, : ~n ~ ~ is the globalizing function; yi(x 
-ai), the function that measures the distance 
from a i to x, is a gauge (Rockafellar, 1970), and 
X is the feasible set, which is supposed to be 
nonempty, convex and closed. 

Remark that 
(i) The functions that measure distances are 

assumed to be gauges, which is much more gen- 
eral than considering norms (the symmetric 
gauges); hence, we can model asymmetric situa- 
tions where the distance from one point to an- 
other may differ from the distance back (rush- 
hour traffic, flight in the presence of wind, navi- 
gation in presence of water currents, inclined 
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terrains, etc.; see, e.g., Drezner  and Wesolowsky, 
1989; Plastria, 1992). 

(ii) Such gauges are not assumed to be the 
same for the different demand points. As Hansen 
et al. (1980) point out, there are three main 
reasons to use mixed gauges: it is often profitable 
for the facility to use different transportation 
modes for carrying its commodities (coal by wa- 
ter, and steel by rail); besides, it could be the case 
that some transportation modes are available only 
in some regions. Finally, variations in topography 
may lead to better  fits by associating different 
gauges to different sites. 

In the literature, some results for particular 
cases of (P) can be found. For example, Hansen 
et al. (1985) solve a generalized minisum problem 
by means of Branch and Bound techniques; 
Michelot and Lefebvre (1987) give a pr imal-dual  
algorithm for the unconstrained Weber problem 
with mixed gauges; Plastria (1987) proposes a 
cutting-plane algorithm for convex and nonde- 
creasing globalizing functions; Juel and Love 
(1988) construct a set that, under certain condi- 
tions of symmetry, contains an optimal solution of 
the minisum problem with mixed norms. 

In order to solve problem (P), we propose in 
this paper an algorithm that only needs the nu- 
merical evaluation of the objective function at the 
inspected points (thus avoiding subdifferential 
calculus), and, thanks to its special nature, it 
produces rather good approximated solutions 
quite quickly. 
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Figure 1. The lattice LI/2. 

change of base in R e . We shall look over those 
that will be used in the algorithm. 

Let A be the matrix whose columns are the 
vectors u and v. 

Property 1. The equation of  a straight fine r pass- 
ing through 2 points o f  L~ can be written as 

(a ,  b ) ' A - l ( x - x  1) = 6c, 

for some integers a, b and c, with a > O, and a and 
b relatively prime. 

P r o p e r t y  2. The lines of  equations 

(a,  b ) ' A - l ( x  - - X  1) = ¢~(C + 1) 

and 

(a ,  b ) ' A - l ( x  - x  1) = 6 ( c  - 1) 

are parallel to r, and no point between either one of  
them and r belongs to L , .  

2 .  T h e  l a t t i c e  L ~  

The Discretizing Algorithm for Location Prob- 
lems (DALP) we propose needs two starting fea- 
sible points, on which we will construct a certain 
type of grid. Given two different points x 1, x 2 
X, let u = x 2 - x  ~, and v a nonzero vector, or- 
thogonal to u. For 6 > 0, we define the set 

L,~ = {x E R 2 : X ' ~ - X I + 6  " , ' U  

+ 6 . n ' v  f o r s o m e m ,  n~2~}.  (1) 

An example is shown in Figure 1. 
It should be noted that the affine geometrical 

properties of the lattice Z a also hold in L~, as a 
consequence of the fact that L~ is just 7 2 after a 

P r o p e r t y  3. Let y X and y 2 be two adjacent points 
of  r (that is: L~ ¢q [yl,  ya] = {yl, y2}), and m ~ 272 
such that 

m 1.a + m 2 . b  = 1 

(Bezout's identity); then, the points yl + m and 
yZ + m (resp. yl  _ m and ya _ m) are adjacent 
points of  

(a ,  b ) ' A - l ( x - x  1) = 6(c  + 1) 

(resp. (a, b ) ~ l - l ( x - x  1) = 6 ( c -  1)). 

The proofs are a straightforward extension of 
those given in Hoffman and Wolfe (1985), after 
an appropriate change of reference system. 

A graphical illustration of these properties is 
given in Figure 2. 
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Figure 2. Properties of L~. 

In this example with x 1 =(0,  0), x2=(1 ,  0), 
v = (0, 1) and ~ = 1; it follows that 

A = A  - 1  = I  

(the identity matrix). 
The line r through yl = (1, 0), yZ = (2, 1) is 

(1, - 1 ) I x  = 1. 

The lines r 1, r e with equations resp. 

(1, - 1)Ix = 2 and (1, - 1)Ix = 0 

are parallel and adjacent to r. 
Finally the vector m = (1, 0) verifies Bezout's 

identity, thus the points y l +  m ,  y 2 +  m (resp. 
y l  _ m, y2 _ m) verify Property 3. 

quasiconvexity and strict quasiconvexity; see Mar- 
tos, 1975), as shown below: 

T h e o r e m  1. The function f :  ~n ~ ~ is unimodal iff 
it is explicitly quasiconvex. 

Proof.  Let f be unimodal. We first prove that it 
is also quasiconvex. For X 1, X 2 ~  ~n, and x ° ~  
(x l, x2), suppose w.l.o.g, that 

max{f (x l ) ,  f (x2 )}  = f ( x l ) .  (2) 

If f ( x  °) > f ( x l ) ,  then, using unimodality, f ( x  °) 
<f(x2) ,  so f ( x  ]) <f(x2) ,  which contradicts (2). 
We now prove that f is strictly quasiconvex: 
suppose that f ( x  1) > f(x2).  If f ( x  °) > f ( x l ) ,  the 
same argument shows that f ( x  1) < f ( x  °) <f(x2) ,  
which is a contradiction. 

Conversely, let f be a explicitly quasiconvex 
function that is not unimodal. Then, there exist 
X 0, X 1, X 2 such that x ° ~  (x i, x2), f ( x  1) <f(x°),  
f ( x  2) < f (x° ) .  If f ( x  1) 4:f(x2), then, as f is ex- 
plicitly quasiconvex, 

f ( x  °) < m a x { f ( x ' ) ,  f (x2 )} ,  

which is absurd. If f ( x  t) =f(x2) ,  then, using the 
quansiconvexity of f ,  

f ( x  °) <_ max{f (x l ) ,  f ( x2 ) }  = f ( x  l) = f ( x 2 ) ,  

which, again, is absurd. Hence, f is unimodal. 
[] 

3. An extens ion  o f  H o f f m a n - W o l f e ' s  a lgor i thm 
for u n i m o d a l  funct ions  

Hoffman-Wolfe 's  algorithm (Hoffman and 
Wolfe, 1985), minimizes unimodal functions over 
7/2 . We use this algorithm in order to allow the 
minimization of F on the grids L 8, what will 
constitute a single step in our DALP. 

Hoffman and Wolfe define unimodality as fol- 
lows: 

A function f : ~n __+ • tO { + ~} is said unimodal 
if for all x °, x 1, x 2, x ° in the segment with 
extremes x I and x 2, f ( x  1) finite, and f ( x  1) < 
f ( x  °) imply f ( x  °) <f(x2) .  Thus, once f is nonde- 
creasing in a direction, it remains so. 

When f takes finite values only, unimodality is 
equivalent to explicit quasiconvexity (i.e.: both 

Consider the problem 

min ( f ( x ) :  x ~ X A L a } ,  

where f is a explicitly quasiconvex function and 
X is a nonempty closed convex set in •z. The 
function is supposed to take a value M (M big 
enough) in ~2 \ X. 

We now outline Hoffman-Wolfe 's  algorithm 
on grids L a. 

This algorithm needs two starting points x 1 
and x 2 ~ L 8 or, equivalently, a line r such that 

card(L~ N X ~ r ) > 2. 

The steps of this algorithm are the following: 

Step 1. Find the two best points y l and y 2 of f 
on L ~ N X O r .  
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Step 2. Let r 1 be one of the two adjacent lines 
to r. 
Find the best point z of f on the set L~ N X N  r 1. 
If z is not bet ter  than yl or y2, then go to 

Step 3; 
else 

set r the line through z and the best point 
among yl and y2; 
go to Step 1. 

Step 3. Let r 2 be the other  adjacent line to r. 
Find the best point z of f on the set L~ A X A  r 2. 
If z is not bet ter  than y~ or y2, then stop: ya 

and y2 are the two best points; 
else 

set r the line through z and the best point 
among yl and y2; 
go to Step 1. 

4. Discretization of the problem (P) 

In order to obtain operative results for the 
general Single-Facility Location Problem (P), 
some restrictions are imposed on the globalizing 
function 4). In the sequel we assume that 4) 
verifies: 

a) The function 4) is a norm in R n. 
b) 4) is nondecreasing, that is: ~b(u) < ~b(v) for 

all u = ( u  l, u 2 . . . . .  u , ) ,  v = ( v  1, v 2 . . . . .  v n) such 
t h a t 0 < u  i < v ,  V i = l , . . . , n .  

This condition is verified in many continuous 
single location problems with mixed gauges in the 
literature; for instance, 

/7 

=  2wiu  
1 

reduces to the Weber  problem, 

c~(u) = max{wiu i :  1 < i < n} 

to the Rawls problem, and 

6 ( u ) = a  wiu i + ( 1 - s )  m a x { w i u i : l < _ i < n  } 

to the cent-dian problem (Halpern,  1978). The 
latter also generates the efficient set for the bicri- 
teria problem 

min( Y'~ Wi')li( X -  ai) , max{wiTi(  x -  a i ) :  1 < i  < n}) 

(Hansen and Thisse, 1981), by varying the param- 
eter a.  

General  results 

Given two points X 1 and x 2 ~  ~2, we have 
defined the grids L a. For a > 0 ,  let the con- 
strained problem (Pa) be 

min F ( x ) = 6 ( Y l ( X - a t )  . . . . .  T . ( x - a . ) )  

s.t. x ~ X A L  a, 

and denote respectively by v(P a) and S a its opti- 
mal value and the set of optimal solutions. 

We now define a norm intimately related to 
L a. In terms of this norm, we first construct a 
rectangle that contains the set S of optimal solu- 
tions of (P), and, besides, we compare v(P) and 
v(Pa). As main consequence, we will be able to 
find, in terms of 3, an upper  bound of the error 
committed it we take v(P a) as the optimal value 
of (P), and hence, we can determine how small 6 
must be taken if we wish a certain accuracy in the 
estimation of v(P). 

For nonzero orthogonal vectors u, v e R2, we 
denote by N .... the polyhedral norm whose unit 
ball has as vertices u + v, u - v, - u  + v, - u  - v, 
that is: 

N .... ( a u + [ 3 v ) = m a x { [ a [ ,  Jil l}.  

Let also B .... be the balls of N"'": 

B .... ( x ;  p)  = {z ~ ~ 2 : N . , , . ( x _ z )  < p } ,  

and 

F ' ( x )  = (b (y , (a ,  - x )  . . . . .  T . ( a .  - x ) ) .  

Obviously, F '  coincides with F when the 
gauges Yi are norms, because they are then sym- 
metrical functions. 

First of all, we mention how to construct a 
rotated rectangle that contains the set S of opti- 
mal solutions of (P). 

Theorem 2. There exist e 1 . . . . .  e .  ~ (0, + oo) such 
that 

S c A B  ..... / F(x)+F'(x) ) x;  " 



170 E.J. Carrizosa, J. Puerto/A discretizing algorithm for location problems 

Proof. For  given gauges Y and y* ,  the funct ion 
3'/3'* is bounded  f rom above in ~ 2 \ { 0 }  and 
bounded  f rom below by a positive number .  

Then,  for i = 1 . . . . .  n, let 

e i = sup {UU'~( z ) /y i (z )} .  
z4=0 

Hence,  e i~(O, +o o) for all i. Let  x * ~ S  and 
x ~ X;  it follows that  

N"'V(x * - x )  

Hence ,  

E i 
<_~ ~/ i (  X *  - -  X )  

~/ i (  X :¢ - -  ai) 
+ Ti(ai - x )  f o r  a l l  i .  

( 1  __1 ) < F ( x , ) + F t ( x  N " ' " ( x * - x ) ~  .. . . .  % 

<F(x)  +Ft(x) .  

Varying x on X, the t heo rem holds. [] 

In some part icular  cases, the scalars e i can 
easily be determined.  

Example  1. If  the unit  ball of  Yi has u and v as 
symmetry axes, that  is, 

" ~ i ( O l U ' q - [ 3 U )  = ~ , i ( l a l u  + 1/31v) 

for all a, [3 ~ ff~, then, it follows that  

w h e r e  P1 = u + u ,  P2  = u - u ,  P3  --- - u  + v ,  1°4 = 

- - u + v .  
R e m a r k  that  the four  one-dimensional  prob- 

lems above are convex. 

Example  3. Consider  the situation depicted in 
Figure 3, with X =  ~2,  ax = (0, 0), a 2 = (1,  1), 
3'1 = II  II~ (the C l norm), 3'2 = II II 2 (the Eu- 
cl idean norm),  and 

¢ ( u l ,  u2) = ul + u2, 

i.e. we are solving the unconst ra ined Webe r  prob- 
lem 

rain I l x - a ~ l l l + l l x - a  zll2. 
XE~ 2 

For  u = (1, 0) and v = (0, 1), as 

N - , ~ ( z )  
e t = sup - -  1 

z.O - ~ ( z )  

and 

N",V(z) 
e z = sup - -  1, 

z . 0  v 2 ( z )  

it follows that  

Sc_ N B"'~(x, ½(F(x)+Ft(x)) ) ,  
x E •  2 

-cBU'V(al, v~) nBu'vta, 2, 2).  

E i <_~ (min{y i (u ) ,  Ti (v)})  1.  

Example  2. If  Yi is a polyhedral  gauge, that  is, its 
unit ball is polyhedral  with V as set of  vertices, 
with the a rguments  o f  L e m m a  1 below, it can be 
seen that  

ei=max{N"'V(d): d ~  V}. 

For  the general  case, the constants  e i could be 
calculated,  if necessary, as 

ei -1 = min / min yi((1  - t)P 1 + tP2), 
t~[0,1] 

min yi((1  - t)P2 + tPa), 
t~[0,1] 

min yi((1 - t)P 3 + tP4), 
t ~ [ o J ]  

min yi((1  - t)P 4 + tP1)~ 
/E[0,1] 1 Figure 3. The superset  given by Theorem 2. 
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In Figure 3, the dashed area represents the 
superset containing the solutionset S. Each de- 
mand point is represented with its unit ball. 

In order to prove termination of the algorithm, 
it is supposed that there exists a constant K such 
that { x ~ L ~ : F ( x ) < K }  is bounded and non- 
empty. This condition is satisfied once the restric- 
tions a) and b) have been imposed on ~b, because 
/~ has compact level sets. 

Before comparing the problems (P) and (P~), 
one lemma is needed. 

Let G : ~2 ---> ~, 

G( ~ ) = ~ ( ~ (  ~ ) , . . . ,  ~ , (~ ) )  

for z = ( z  1, z 2 ) ~ R  2 ,and 

U(~b; y, . . . . .  Yn) = max{G(u + v) ,  

G(~  - v) ,  G ( - u  + v) ,  G ( - u  - ~)}. 

Lemma 1. For all z ~ ~2, 

G(z) < U(~b; y, . . . . .  Yn)NU'V(z). 

Proof. Let 

a = m a x  N,,~(z ) : z e 0  

= m a x { G ( ~ ) :  U .... (~ )  = 1 / ,  

because 4~ and all 7~ are at least gauges. Besides, 
the boundary of the unit ball of N u'v is easily 
determined, so 

a = max{max{G(u + t v ) : l t l  < 1}, 

max{G(tu + v) : It[ < 1}, 

m a x { G ( - u + t v ) : l t l < l } ,  

m a x { a ( t u - v ) :  Itl  ___1}}. 

These four functions are all convex, because 
gauges are convex, and ~b is nondecreasing, so 
these four maxima are attained at the boundary 
of the domain, that is, 

a = max{G(u + v), G ( u -  v), G ( - u  + v), 

G ( - u - v ) }  = U(~ ;  ~l . . . . .  ~o). [] 

The following theorem gives upper and lower 
bounds for v(P) in terms of v(P~). 

Theorem 3. If X N L~ -4= O, then 

v( ea) > v( e )  > v( P~) - U(&; y, . . . . .  Yn)P~, 

where 

p~= sup inf N U " ( x - y ) .  
x~X  y~L6AX 

Proof. The first inequality is trivial. For the sec- 
ond one, let x ~ S  ~ and x * ~ S ;  a = v ( P ~ ) -  
v(P). First, we can find a point y8 ~L~  A X  such 
that 

N ..... ( y ~ - x * ) < p ~ .  

Hence, a <F(y ~) -F(x*) .  As the triangular in- 
equality holds for gauges (Durier and Michelot, 
1985), it follows that 

O~ ~ 6 ( ' y l ( y  6 - - X * )  + ' Y l ( X *  -- a t ) , . . .  , y , (y~  - x * )  

+7n(X* --a")) - F ( x * ) .  

Furthermore,  because of the fact that ~b is subad- 
ditive, and using Lemma 1, 

a <F(x*)  + G(y ~ - x * )  - F ( x * )  = G ( y  ~ - x * )  

< U(~b; y,,...,yn)UU'L(y ~ - x * )  

_< u(4, ;  ~,,,...,-/,~)p~. [] 

In spite of its involved expression, the constant 
p~ can be evaluated (at least overestimated) in 
some particle cases. For example, if X = E2, then 

1 it follows that p~ < ~5. 
With the notation developed above, and a given 

stopping rule, the DALP may be described as 
follows: 

Step O. Take two starting points, x l, X 2 EX.  
Take h > 0 (the step). 
Set ,~ = 1. 

Step 1. Set u = x  2 - x  1, and v a nonzero vec- 
tor, orthogonal to u. 
For any 6 > 0, define L~ as in (1). 
Using Hoffman-Wolfe ' s  algorithm, find y l and 
y2, the two best solutions on X n L~. 
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If the stopping rule is satisfied, go to step 2; 
else 

Set X 1 = y l ;  
Set x2 = y2; 

Set 6 = 6 /h ;  
Go to Step 1. 

Step 2. Take the best of y l and y2 as the 
optimal solution of (P), and its value as v(P). 
STOP. 

Among the possible stopping rules (see, e.g., 
Bazaraa and Shetty, 1979), two rules seem to be 
particularly appropriate for this algorithm; as 
Theorem 3 gives an upper bound of the error 
committed, one might stop when 

U ( ~ ;  "Yl, "Y2 . . . . .  "Yn)P6 < g 

for some prespecified e > O. On the other  hand, 
one might stop when the width of the grid L~ is 
small enough, i.e.: when 6 < 8 0 for some prespec- 
ified 8 0 > 0. 

Remark that in the algorithm above the nu- 
merical evaluation of the objective function at the 
inspected points suffices, thus subdifferential cal- 
culus is not needed, which is a remarkable fea- 
ture when subdifferential calculus is cumber- 
some. 

Although it does not seem easy to find a 
scenario reflecting this situation without intricate 
mathematics, we can consider as an illustration 
the following dynamic model: it is a fact that 
travel times are time-varying (depending on traf- 
fic conditions, weather, etc.). Hence, if at each 
instance t the distance from demand point a i to 
x is a gauge y i ( x -  ai, t), then the average dis- 
tance in the interval time T is 

y i * ( x - a i )  = fTYi(X--ai,  t) d/xi ( t ) ,  

where /z  i is a certain probability measure. 
In general, the integrals above can only be 

numerically solved; while this can be done by 
standard software packages, the calculus of the 
subdifferential is a rather complex task. 

Observe that, in this situation, the classical 
approach of fitting by a (weighted) tp norm (see, 
e.g., Berens, 1988) seems to be inappropriate. 

The iterative nature of the algorithm reduces, 
by using at each step as starting points the two 
best points obtained in the previous step, the 

computational effort, compared with a one-step 
algorithm with a small & 

The convergence of the procedure is studied in 
the next section. 

5. Convergence of the algorithm 

The theorem below assures the convergence of 
the DALP. Due to the fact that, in general, there 
is not only one optimal solution of (P), the 
strongest result we can state is the following: 

Theorem 4. Let {6 n} be a sequence of positive real 
numbers converging to O. For each n, let x ~ be an 
optimal solution of the discretized problem (P~). 
Then, any accumulation point of the sequence {x n} 
is an optimal solution of (P). 

Proof. Let x be an accumulation point of the 
sequence {xn}, and let x*  ~ S, the set of optimal 
solutions for (P). For a given norm II" II and 
6 > 0, denote by B(x*,  8) the set {y ~ R2: II x* 
- y l l  <6}. 

As F is continuous at x*,  for a given e > 0, 
there exists a 61 > 0 such that 

I F ( x * ) - F ( y )  I < e  

for all y in B(x*,  6 0. It can be easily seen that 
there exists a certain n o ~ [~ such that 

L~, r i B ( x * ,  8) nX~:~b 

for all n _ n 0. For n > n 0, we can thus take y~ in 
L~, n B(x* ,  81) AX;  it follows that 

F ( x  ~) < F ( y " )  <e + F ( x * )  

for all n > n 0. Taking limits in n, and using the 
fact that F is continuous, we deduce that x ~ S. 
[] 

When the set S of optimal solutions for (P) 
contains only one point, the theorem above can 
be improved. 

Corollary 1. If S = {x*}, then the sequence {x n} 
defined in the preceding theorem converges to x *. 

In order to assure the uniqueness of the solu- 
tion of (P), some further conditions must be im- 
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Table 1 
Problem 1: Minisum with t 2 norms 

Step ~ Optimal point Functional Inspections 
value 

1 1 (6.0000, 4.0000) 290.8704 72 
2 10-I (5.6000, 4.1000) 288.6931 45 
3 10 2 (5.5700, 4.1500) 288.6658 126 
4 10 --3 (5.5570, 4.1450) 288.6656 51 
5 10 4 (5.5689, 4.1471) 288.6656 26 
6 10 5 (5.5689, 4.1470) 288.6656 26 

Table 3 
Problem 3: Cent-dian (a = ½) with mixed gauges tl, /2, A 

Step ~ Optimal point Functional Inspections 
value 

1 1 (4.00000, 3.00000) 179.6483 95 
2 10 i (4.90000, 3.50000) 179.3786 30 
3 10 -2 (4.99000, 3.59000) 179.3786 26 
4 10 3 (4.99900, 3.59900) 179.3786 26 
5 10 -4 (4.99990, 3.59990) 179.3786 27 
6 10 5 (4.99999, 3.60000) 179.3786 27 

posed  on  ~b and the  gauges,  as the  ones  s tud ied  
by Pe legr in ,  Miche lo t  and  PIas t r ia  (1985). 

6. Some examples 

A set A = {a 1 . . . . .  a20} of  20 d e m a n d  poin ts  
a re  taken.  T h e  coo rd ina t e s  of  the  po in ts  and  the  
weights  for  the  gauges  are  given in P las t r ia  (1987, 
Tab le  1). 

In our  first  example ,  we solve the  uncon-  
s t ra ined  min i sum p r o b l e m  with the  t2-norm.  

In the  second  example ,  the  object ive  funct ion  
is the  same,  but  we res t r ic t  the  feas ible  set  to the  
rec tang le  [0,5] × [0,4]. In  par t i cu la r ,  the  op t imal  
so lu t ion  for p r o b l e m  1 is not  feas ib le  for  p r o b l e m  

2. 
In the  th i rd  example ,  the  d e m a n d  poin ts  and  

weights  a re  the  same  as in prev ious  examples ;  
however ,  the  gauge  "Yi are  d i f fe ren t  in d i f fe ren t  
points :  Yi is the  tel-norm for i = 1 . . . . .  7, Yi is the  
t2 -norm for i = 8 . . . . .  15, and  o therwise  yi is the  
po lyhedra l  a symmet r i c  gauge  with ex t remal  ver-  
t ices (0, 1), (1, - 1 )  and  ( - 1 ,  - 1 ) .  T h e  global iz-  
ing funct ion  tb for  this p r o b l e m  is 

n 

6 ( u l  . . . . .  un) = 0 . 5 .  Eui+O.5"max{u,  . . . . .  Un}, 
1 

Table 2 
Problem 2: Minisum with ¢2 norms subject to [0,5]x[0,4] 

Step 6 Optimal point Functional Inspections 
value 

1 10 - l  (4.5000, 3.6000) 291.8268 38 
2 10 -2 (4.9500, 3.9600) 291.8269 12 
3 10 -3 (4.9950, 3.9960) 291.8269 12 
4 10 -4 (4.9995, 3.9996) 291.8269 12 
5 10 5 (4.9999, 3.9999) 291.8269 12 
6 10 6 (5.0000, 4.0000) 291.8269 15 

tha t  is, we are  solving the  unc ons t r a ine d  mixed-  
gauges  cen t -d i an  p r o b l e m  with a = 0.5. 

The  first  i t e ra t ions  for  these  examples  a re  
shown respect ive ly  in Tab les  1, 2 and 3. In these  
tables ,  the  co lumns  r e p r e s e n t  respect ive ly  the  s tep  
in the  a lgor i thm,  the  width  (3)  of  the  grid,  the  
op t ima l  so lu t ion  x a on L a, its func t iona l  value,  
and  the  n u m b e r  of  inspec ted  po in ts  in each  step.  

In  all the  examples ,  we cons ide r  A = 10, and  
x 1 = (0, 0), x 2 = (1, 0) as s ta r t ing  points .  

Fo r  the  first one,  we ob ta in  in the  four th  
i t e ra t ion  the  op t imal  solut ion given by Plas t r ia  
(1987). 

7. Conclusions 

In this p a p e r  we have p r o p o s e d  a new ap-  
p roach  for  solving cons t r a ined  and  uncons t r a ined  
p l a n a r  s ingle-faci l i ty loca t ion  p rob l ems  u n d e r  
qui te  gene ra l  a ssumpt ions  about  the  g lobal iz ing 
funct ion.  O u r  m e t h o d  avoids the  calculus  of  sub- 
grad ien ts ,  and,  wha t  is more ,  explici t  forms for 
gauges  are  not  needed .  

Convergence  to the  op t ima l  value is shown. 
Besides,  the  a lgor i thm is very easy to imp lemen t ;  
some examples  a re  given, showing a fast conver-  
gence  in a small  n u m b e r  of  i tera t ions .  
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